Some Words on Cryptanalysis of Stream Ciphers
نویسنده
چکیده
I the world of cryptography, stream ciphers are known as primitives used to ensure privacy over a communication channel. One common way to build a stream cipher is to use a keystream generator to produce a pseudorandom sequence of symbols. In such algorithms, the ciphertext is the sum of the keystream and the plaintext, resembling the one-time pad principal. Although the idea behind stream ciphers is simple, serious investigation of these primitives has started only in the late 20 century. Therefore, cryptanalysis and design of stream ciphers are important. In recent years, many designs of stream ciphers have been proposed in an effort to find a proper candidate to be chosen as a world standard for data encryption. That potential candidate should be proven good by time and by the results of cryptanalysis. Different methods of analysis, in fact, explain how a stream cipher should be constructed. Thus, techniques for cryptanalysis are also important. This thesis starts with an overview of cryptography in general, and introduces the reader to modern cryptography. Later, we focus on basic principles of design and analysis of stream ciphers. Since statistical methods are the most important cryptanalysis techniques, they will be described in detail. The practice of statistical methods reveals several bottlenecks when implementing various analysis algorithms. For example, a common property of a cipher to produce n-bit words instead of just bits makes it more natural to perform a multidimensional analysis of such a design. However, in practice, one often has to truncate the words simply because the tools needed for analysis are missing. We propose a set of algorithms and data structures for multidimensional cryptanalysis when distributions over a large probability space have to be constructed. This thesis also includes results of cryptanalysis for various cryptographic primitives, such as A5/1, Grain, SNOW 2.0, Scream, Dragon, VMPC, RC4, and RC4A. Most of these results were achieved with the help of intensive use of the proposed tools for cryptanalysis.
منابع مشابه
On the computational complexity of finding a minimal basis for the guess and determine attack
Guess-and-determine attack is one of the general attacks on stream ciphers. It is a common cryptanalysis tool for evaluating security of stream ciphers. The effectiveness of this attack is based on the number of unknown bits which will be guessed by the attacker to break the cryptosystem. In this work, we present a relation between the minimum numbers of the guessed bits and uniquely restricted...
متن کاملCryptanalysis and Design of Stream Ciphers
This thesis presents some novel results on the cryptanalysis and design of stream ciphers. The first part of the thesis introduces various stream ciphers design and cryptanalysis techniques. The second part of the thesis gives the cryptanalysis of seven stream ciphers. The properties of addition are exploited in the cryptanalysis of two stream ciphers: the differential-linear cryptanalysis agai...
متن کاملA new method for accelerating impossible differential cryptanalysis and its application on LBlock
Impossible differential cryptanalysis, the extension of differential cryptanalysis, is one of the most efficient attacks against block ciphers. This cryptanalysis method has been applied to most of the block ciphers and has shown significant results. Using structures, key schedule considerations, early abort, and pre-computation are some common methods to reduce complexities of this attack. In ...
متن کاملDifferential Cryptanalysis in Stream Ciphers
In this paper we present a general framework for the application of the ideas of differential cryptanalysis to stream ciphers. We demonstrate that some differences in the key (or the initial state or the plaintext) are likely to cause predicted differences in the key stream or in the internal state. These stream differences can then be used to analyze the internal state of the cipher and retrie...
متن کاملCryptanalysis of Stream Ciphers with Linear Masking
We describe a cryptanalytical technique for distinguishing some stream ciphers from a truly random process. Roughly, the ciphers to which this method applies consist of a “non-linear process” (say, akin to a round function in block ciphers), and a “linear process” such as an LFSR (or even fixed tables). The output of the cipher can be the linear sum of both processes. To attack such ciphers, we...
متن کامل